Mitigating Top-Down Cracking in Asphalt Pavements

Christos A. Drakos, PhD Florida DOT - University of Florida

Outline

- Introduction
- Scope of Study
- Volumetric Properties
- Material Properties
- Energy Ratio
- Summary & Conclusions

Focus on the Energy Ratio Concept, Development & Results

Introduction

- Top-down cracking is recognized as a major form of distress in HMA.
- 90% of pavements scheduled for rehab:
 - Deficient crack rating
 - Top-down cracking
- FDOT UF embarked on a multi-year study to identify causes and solutions.

Scope of Study

- 25 field test sections to-date
 Continuing study w/ 12 additional planned
- Comprehensive evaluation:
 - Volumetric properties
 - Material properties
 - Effect of traffic loads and tires
 - Pavement structure (pavement design)

Air Voids

WP cores showed lower AV% than BWP

Theoretical Film Thickness

Proposed minimum 9-10 µm [Kandhal]

Binder Viscosity

• Age hardening

Mixture Properties

Superpave indirect tensile test:

- 1. Resilient modulus (Cyclic loading)
- 2. Creep (Constant load with time)
- 3. Strength (Increase load until fracture)

- Apply vertical load
- Measure vertical & horizontal deformations

Resilient Modulus

Measure of elastic stiffness

Creep Compliance

• Ability of the mixture to relax stresses

m-Value

Measurement of creep rate (rate of damage)

Tensile Strength

Maximum tensile stress before failure

Dissipated Creep Strain Energy

Based on the M_R and Strength tests

Florida Department of Transportation

Fracture Energy (FE)

What is missing?

• Energy by itself did not accurately predict the performance of all sections

 Need to introduce a model that predicts cracking performance based on material properties (from IDT creep test) and pavement structure characteristics (predicted tensile stress)

HMA Fracture Model

 Calculates the crack growth for a given level of applied stress

- Using:
 - Material properties m, D₁ & DCSE_f
 - Structural properties σ_{AVE}

HMA Fracture Model

DCSE

Cycles to Failure

 Used the HMA Fracture Model to calculate N_f for crack to propagate 2 in

Minimum Energy

- $DCSE_{min}$ is the minimum energy required to produce $N_f = 6000$
- Express the DCSE_{min}, D₁ & m-value relation in a single function:

$$- \text{DCSE}_{\min} = \frac{\text{m}^{2.98}\text{D}_{1}}{\text{A}}$$
$$- \text{A} = \frac{(6.36 - \text{S}_{t})}{33.44 \times \sigma_{t}^{3.1}} + 2.46 \times 10^{-8}$$

$$S_t = Tensile Strength$$

 $\sigma_t = Tensile Stress$

Energy Ratio Concept

• The $DCSE_{HMA}$ has to be greater than the $DCSE_{min}$ for good cracking performance:

Florida Department of Transportation

Energy Ratio Results

- Examined all sections
- Performance criteria: ER>1 ; DCSE_{HMA}>0.75

Florida Department of Transportation

Summary & Conclusions

- Volumetric properties are not a good predictor for cracking performance
- Verified the importance of mixture properties and pavement structure in predicting cracking performance
- HMA fracture mechanics properly accounts for effects of mixture properties. The relative cracking performance predicted agrees with field observations

Summary & Conclusions

- Identified and defined a set of criteria that can predict mixture cracking performance:
 - ER>1
 - $-DCSE_{HMA} > 0.75$
- Verified the requirements with previous test sections
- No single property can be an accurate performance predictor; properties are interrelated and we need to consider them as a system

